기관회원 [로그인]
소속기관에서 받은 아이디, 비밀번호를 입력해 주세요.
개인회원 [로그인]

비회원 구매시 입력하신 핸드폰번호를 입력해 주세요.
본인 인증 후 구매내역을 확인하실 수 있습니다.

회원가입
서지반출
초등학교 저학년 학생의 수학 성취도에 대한 예측변인 종단 연구
[STEP1]서지반출 형식 선택
파일형식
@
서지도구
SNS
기타
[STEP2]서지반출 정보 선택
  • 제목
  • URL
돌아가기
확인
취소
  • 초등학교 저학년 학생의 수학 성취도에 대한 예측변인 종단 연구
  • A Longitudinal Study on Prediction of Math Achievement of Primary Grade Children
저자명
김애화
간행물명
학습장애연구KCI
권/호정보
2014년|11권 1호(통권24호)|pp.73-93 (21 pages)
발행정보
한국학습장애학회|한국
파일정보
정기간행물|KOR|
PDF텍스트(0.62MB)
주제분야
특수교육학
원문 미리보기는 1페이지만 제공 됩니다. 전체 페이지 보기를 원하실 경우 다운로드열람하기를 이용해 주세요.
서지반출

국문초록

본 연구에서는 초등학교 저학년 학생을 대상으로 1년간 추적 연구를 실시하여, 예측변인 과 같은 시점에서 측정한 수학 성취도에 대한 예측변인과 1년 후에 측정한 수학 성취도에 대한 예측변인을 살펴보고자 하였다. 이를 위해 1차 검사에 72명의 아동이 참여하였고, 1년 후인 2차 추적 검사 시에는 66명의 아동이 참여하였다. 예측변인 검사로는 일반적인 인지처 리능력(작동기억, 처리속도 검사)와 특정 학업영역별 인지처리능력(수량 변별, 빈 칸에 알맞 은 수 넣기, 수의미, 간단 덧셈, 간단 뺄셈 검사) 검사를 사용하였으며, 종속변인 검사로는 KISE 기초학력검사-수와 연산 검사를 사용하였다. 주요 연구 결과를 요약하면 다음과 같다. 첫째, 1차와 2차 수학 성취도를 공통적으로 가장 많이 예측하는 변인은 간단 뺄셈으로 나타 났다. 둘째, 간단 뺄셈 다음으로 1차 수학 성취도를 예측하는 변인으로는 수량 변별과 수의 미로 나타났다. 본 연구 결과의 요약, 연구 결과의 제한점 및 향후 연구에 관한 제언이 논의 되었다.

영문초록

The present study examined the current and longitudinal predictors of math achievement of primary grade children. Seventy two children were examined in predictor measures and math achievement measures and 62 children were reassessed on math achievement measures after one year. Predictor measures included domain-general cognitive processing measures(i.e. working measure, processing speed measure) and domain-specific cognitive processing measures(i.e. magnitude comparison, missing number, number meaning, addition combination, subtraction combination). Dependent measures included KISE BAAT-number subtest and KISE BAAT-computation subtest. Major findings of this study were summarized as follows. First, subtraction fact was the most significant current and longitudinal predictors of the math measures. Second, magnitude comparison and number meaning were also significant current and longitudinal predictors. The results, limitations of this study, and directions for future studies were discussed.

목차

Ⅰ. 서 론
Ⅱ. 연구방법
Ⅲ. 연구결과
Ⅳ. 논 의
참고문헌

참고문헌 (64건)

  • 김애화 (2006). 수학 학습장애 위험학생 조기선별검사 개발: 교육과정중심측정 원리를 반영한 수감각검사, 특수교육학연구, 40(4), 103-133.
  • 김애화, 김의정 (2012). 한국형 학습장애 개념에 대한 고찰. 학습장애연구, 9(1), 41-65.
  • 김애화, 김의정, 유현실 (2011a). 한국형 학습장애 진단 모형 탐색: 읽기 성취와 읽기 심리처리를 통한 읽기 장애 진단 모형. 학습장애연구, 8(2), 47-64.
  • 김애화, 유현실 (2012). 조기 수학 검사 개발 연구, 교과교육학연구, 16(1), 347-370.
  • 정대영, 하정숙 (2011). 초등학교 수학 학습장애아동과 수학학습부진아동의 수감각과 작업기억 비교. 특수교육학연구, 45(4), 71-90.
  • Adams, J. W., & Hitch, G. J. (1997). Working memory in children’s mental arithmetic. Journal of Experimental Child Psychology, 67, 21-38.
  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189-01.
  • Booth, J., & Siegler, R. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016-031.
  • Bryant, D. P., Bryant, B. R., Gersten, R., Scammacca, N., & Chavez, M. M. (2008). Mathematics intervention for First-and Second-grade students with mathematics difficulties. Remedial and Spacial Education, 29(1), 20-32.
  • Bull, R., & Johnston, R. S. (1997). Children’s arithmetical difficulties: Contributions from processing speed, item identification, and short-term memory. Journal of Experimental Child Psychology, 65, 1-4.
  • Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19, 273-293.
  • Chard, D. J., Clarke, B., Baker, S., Otterstedt, J., Braun, D., & Katz, R. (2005). Using measures of number sense to screen for difficulties in mathematics: Preliminary findings. Assessment for Effective Intervention, 30(2), 3-14.
  • Chirino, P. T., Fletcher, J. M., Ewing-Cobbs, L., Barnes, M. A., & Fuchs, L. S. (2007). Cognitive arithmetic differences in learning difficulty groups and the role of behavioral inattention. Learning Disabilities Research & Practice, 22, 25-35.
  • Clarke, B. & Shinn, M. R. (2004). A preliminary investigation into the identification and development of early mathematics curriculum-based measurement. School Psychology Review, 33, 234-248.
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506.
  • De Smedt, B., Verschaffel, L., & Ghesquiere, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469-79.
  • De Smedt, B., Holloway, I. D., & Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation in children with varying levels of arithmetical fluency. Neuroimage, 52, 771-781.
  • Denckla, M. B., & Rudel, R. G. (1976). Rapid automatized naming(RAN): Dyslexia differentiated from other learning disabilities. Neuropsychologia, 14, 471-479.
  • Fleischner, J. E., Garnett, K., & Shepherd, M. J. (1982). Proficiency in basic fact computation of learning disabled and nondisabled children. Focus on Learning Problems in Mathematics, 4, 47-55.
  • Fuchs, L, S., Compton, D. L., Fuchs, D., Paulsen, K., & Bryant, J. (2005). The prevention, identification, and cognitive deteminants of math difficulty. Journal of Educational Psychology, 97(3), 493-513.
  • Fuchs, L. S., Fuchs, D., Stuebing, K., Fletcher, J. M., Hamlett, C. L., & Lambert, W. (2008). Problem solving and computational skill: Are they shared or distinct aspects of mathematical cognition? Journal of Educational Psychology, 100, 30-47.
  • Fuchs, D., Hale, J. B., & Kearms, D. M. (2011). On the importance of cognitive processing perspective: an introduction. Journal of Learning Disabilities, 44, 99-104.
  • Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological and genetic components. Psychological Bulletin, 114, 345-362.
  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4-15.
  • Geary, D. C., Bow-Thomas, C. C., Fan, L., & Siegler, R. S. (1993). Even before formal instruction, Chinese children outperform American children in mental addition. Cognitive Development, 8, 517-529.
  • Geary, D. C., Bow-Thomas, C. C., Yao, Y. (1992). Counting knowledge and skill in cognitive additional A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54(3), 372-391.
  • Geary, D. C., Brown, S. C, & Samaranayake, V. A. (1991). Cognitive addition: A shortlongitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental Psychology, 27, 787-797.
  • Geary, D. C., Hoard, C. O., Bryd-Craven, J., Nugent, L., & Numptee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343-1359.
  • Geary, D. C., Widaman, K. F., Little, T. D., & Cormier, P. (1987). Cognitive addition: Comparison of learning disabled and academically normal elementary school children. Cognitive Development, 2, 249-269.
  • Gersten, R. & Chard, D. (1999). Number Sense: Rethinking arithmetic instruction for students with mathematical disabilities. The Journal of Special Education, 33(1), 18-28.
  • Gersten, R., Jordan, N. C., & Jonathan, R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 293-304.
  • Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability. Austin, TX: Pro-Ed.
  • Goldman, S. R., Pellegrino, J. W., & Mertz, D. L. (1988). Extended practice of basic addition facts: Strategy changes in learning disabled students. Cognition & Instruction, 5, 223-65.
  • Griffin, S., & Case, R. (1997). Re-thinking the primary school math curriculum: An approach based on cognitive science. Issues in Education, 3(1), 1-9.
  • Griffin, S., Case, R., & Siegler, R. S. (1994). Rightstart: providing the central conceptual prerequisities for first formal learning of arithmetic to students at risk for school failure. In K. McGilly (Ed.), Classroom Lessons: Integrating Cognitive Theory and Classroom Practice (pp.25-Š49). Cambridge, MA: MIT Press.
  • Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: Prevalence and demographic features. Developmental Medicine and Child Neurology, 38, 25-33.
  • Hanich, L. B., Jordan, N. C., Kaplan, D., & Dick, J. (2001). Performance across different areas of mathematical cognition in children with learning difficulties. Journal of Educational Psychology, 93, 615-626.
  • Hecht, S. A., Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (2001). The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: a longitudinal study from second to fifth grade. Journal of Experimental Child Psychology, 79, 192-227.
  • Hitch, G. J., & McAuley, E. (1991). Working memory in children with specific arithmetical learning disabilities. British Journal of Psychology, 82, 375-386.
  • Holmes, J., & Adams, J. W. (2006). Working memory and children’s mathematical skills: Implications for mathematical development and mathematics curricula. Educational Psychology, 26, 339-366.
  • Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82-88 (this issue).
  • Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic factmastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85, 103-119.
  • Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting First-grade math achievement from developmental number sense trajectories. Learning Disabilities, 22(1), 36-46.
  • Jordan, N. C., Kaplan, D., Olah, L. N., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77, 153-175.
  • Jordan, N. C., & Montani, T. O. (1997). Cognitive arithmetic and problem solving: A comparison of children with specific and general mathematics difficulties. Journal of Learning disabilities, 30, 624-634.
  • Kail, R., & Hall, L. K. (1999). Sources of developmental change in children’s word-problem performance. Journal of Educational Psychology, 91, 660-68.
  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8-.9-year-old students. Cognition, 93, 99-125.
  • Männamaa, M., Kikas, E., Peets, K., & Palu, A. (2012). Cognitive correlates of math skills in third-grade students. Educational Psychology, 32(1), 17-40.
  • Mazzocco, M. M. M, & Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research & Practice, 20(3), 142-155.
  • Moss, J., & Case, R. (1999). Developing children’ understanding of the rational numbers: A new model and an experimental curriculum. Journal for Research in Mathematics Education, 30(2), 122-47.
  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519-1520.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • Okamoto, Y., & Case, R. (1996). Exploring the microstructure of children's central conceptual structures in the domain of number. Monographs of the Society for Research in Child Development, 61, 27-59.
  • Ostad, S. A. (1997). Developmental differences in addition strategies: A comparison of mathematically disabled and mathematically normal children. British Journal of Educational Psychology, 67, 345- 357.
  • O¨stergren, R., & Tra¨ ff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115, 405-421.
  • Passolunghi, M. C., Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88, 348-367.
  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., Zorzi, M., (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116, 33-41.
  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110-122.
  • Siegler, R. S. (1996). Emerging minds: The process of change in children's thinking. New York: Oxford University Press.
  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428-44
  • Swanson, H. L. (2011). Working Memory, Attention, and Mathematical Problem Solving: A Longitudinal Study of Elementary School Children. Journal of Educational Psychology, 103(4), 821-837.
  • Swanson, H. L., Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. Review of Educational Research, 79(2), 249-274.
  • Swanson, L., & Kim, K. (2007). Working memory, short-term memory, and naming speed as predictors of children’s mathematical performance. Intelligence, 35, 151-68.
  • Van de Walle, J. A. (2004). Elementary and middle school mathematics: Teaching developmentally. New York: Pearson Education, Inc.
구매하기 (5,000)
추천 연관논문